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Constant-Cutoff Approach to SU(3)-Symmetry 
Breaking for Strange Dibaryon States 
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We suggest a quantum stabilization method for the SU(2) o--model, based on the 
constant-cutoff limit of the cutoff quantization method developed by Balakrishna 
et al., which avoids the difficulties with the usual soliton boundary conditions 
pointed out by Iwasaki and Ohyama. We investigate the baryon number B = 1 
sector of the model and show that after the collective coordinate quantization it 
admits a stable soliton solution which depends on a single dimensional arbitrary 
constant. We then show that the approach to SU(3)-symmetry breaking for strange 
dibaryon states proposed by Kopeliovich et al. can be simplified by omitting the 
Skyrme stabilizing term and using the constant-cutoff stabilization method. We 
derive the results for spectra of some strange and nonstrange dibaryon states and 
obtain the numerical results for the absolute masses of these states, in reasonable 
agreement with the values obtained, using the complete Skyrme model, by 
Kopeliovich et al. 

1. I N T R O D U C T I O N  

It was shown by Skyrme (1961, 1962) that baryons can be treated as 
solitons of a nonlinear chiral theory. The original Lagrangian of the chiral 
SU(2) (r-model is 

5f = - ~  Yr O~U O~U + (1.1) 

where 

2 
U = ~ (or + in'-~) (1.2) 

is a unitary operator (UU + = 1) and F~ is the pion-decay constant. In (1.2), 
cr = or(r) is a scalar meson field and ~r = ~( r )  is the pion isotriplet. 
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The classical stability of the soliton solution to the chiral {y-model 
Lagrangian requires an additional ad hoc term, proposed by Skyrme (1961, 
1962), to be added to (1.1) 

1 
,~sk - 32e 2 Tr[U+O~ U, U+OvU] 2 (1.3) 

with a dimensionless parameter e and where [A, B] = AB - BA. It was 
shown by several authors (Adkins et al., 1983; Witten, 1979, 1983a,b; for 
other references see Holzwarth and Schwesinger, 1986, and Nyman and 
Riska, 1990) that, after the collective quantization using the spherically sym- 
metric ansatz 

U0(r) = exp[i'r.roF(r)], r0 = r/r (1.4) 

the chiral model, with both (1.1) and (1.3) included, gives good agreement 
with experiment for several important physical quantities. Thus it should be 
possible to derive the effective chiral Lagrangian, obtained as a sum of (1.1) 
and (1.3), from a more fundamental theory like QCD. On the other hand, it 
is not easy to generate a term like (1.3) and give a clear physical meaning 
to the dimensionless constant e in (1.3) using QCD. 

Mignaco and Wulck (MW) (1989) indicated therefore the possibility to 
build a stable single-baryon (n = 1) quantum state in the simple chiral theory 
with the Skyrme stabilizing term (1.3) omitted. MW showed that the chiral 
angle F(r) is in fact a function of a dimensionless variable s = -~• where 
X"(0) is an arbitrary dimensional parameter intimately connected to the usual 
stability argument against the soliton solution for the nonlinear ~r-model 
Lagrangian. 

Using the adiabatically rotated ansatz U(r, t) = A(t)Uo(r)A+(t), where 
U0(r) is given by (1.4), MW obtained the total energy of the nonlinear ~- 
model soliton in the form 

'rr 1 1 [x"(O)] 3 j ( j  + 1) (1.5) 
F~ = -~ F 2 ~ a + 2 ( ~ / 4 ) F ~  

where 

a = I f [ ~ s 2 ( d ~ l  2 sin2(~ \dsj+8 9)] 
b=f~ds6~43 s2s in2( l~  ) 

and ~(s) is defined by 

1 F(r) = F(s) = -n'rr + ~ ~(s) 

ds (1.6) 

(1.7) 

(1.8) 
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The stable minimum of the function (1.5) with respect to the arbitrary dimen- 
sional scale parameter X"(0) is 

E = F~ J(J + 1)J (1.9) 

Despite the nonexistence of a stable classical soliton solution to the 
nonlinear or-model, it is possible, after the collective coordinate quantization, 
to build a stable chiral soliton at the quantum level, provided that there is a 
solution F = F(r) which satisfies the soliton boundary conditions, i.e., F(0) 
= - n w ,  F(~) = 0, such that the integrals (1.6) and (1.7) exist. 

However, as pointed out by Iwasaki and Ohyama (1989), the quantum 
stabilization method in the form proposed by Mignaco and Wulck (1989) is 
not correct, since in the simple ty-model the conditions F(0) = - n r r  and 
F(~) = 0 cannot be satisfied simultaneously. If the condition F(0) = - ~  is 
satisfied, Iwasaki and Ohyama obtained numerically F(~) --~ -w/2 ,  and the 
chiral phase F = F(r) with correct boundary conditions does not exist. 

Iwasaki and Ohyama also proved analytically that both boundary condi- 
tions F(0) = -n-rr and F(~) = 0 cannot be satisfied simultaneously. Introduc- 
ing a new variable y = 1/r into the differential equation for the chiral angle 
F = F(r), we obtain 

d2F 1 
- sin 2F (1.10) dy2 y2 

There are two kinds of asymptotic solutions to equation (1.10) around the 
point y = 0, which is called a regular singular point if sin 2F ~ 2F. These 
solutions are 

F(y) = m'rr + cy2, m -- even integer (1.11) 
2 

F(y) = Tm'rr+(r c ~  --~ l n (cy )+  c~] m = odd integer (1.12) 

where c is an arbitrary constant and ~ is a constant to be chosen appropriately. 
When F(0) = -n'rr, then, we want to know which of these two solutions is 
approached by F(y) when y --> 0 (r --> o~). In order to answer that question 
we multiply (1.10) by y2F'(y) ,  integrate with respect to y from y to ~, and 
use F(0) = - nw .  Thus we get 

yZF'(y) + 2y[F'(y)]2dy = 1 - cos[2F(y)] (1.13) 
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Since the left-hand side of (1.13) is always positive, the value of F(y)  is 
always limited to the interval nTr - "rr < F(y)  < n'rr + "rr. Taking the limit 
y ~ 0, (1.13) reduces to 

o~2y[F'(y)]  2 dy = 1 - ( - 1 )  m (1.14) 

where we used (1.11)-(1.12). Since the left-hand side of (1.14) is strictly 
positive, we must choose an odd integer m. Thus the solution satisfying F(0) 
= -n'rr approaches (1.12) and we have F(~) v ~ 0. The behavior of the 
solution (1.11) in the asymptotic region y ~ ~ (r ~ 0) is investigated by 
multiplying (1.10) by F ' ( y ) ,  integrating from 0 to y, and using (1.11). The 
result is 

[F,(y)] 2 _ 2 sin2F(y) f l  2 sin2F(y) 
y2 + y3 dy (1.15) 

From (1.15) we see that F ' ( y )  ~ const as y ~ % which means that F(r) ~-- 
1/r for r ~ 0. This solution has a singularity at the origin and cannot satisfy 
the usual boundary condition F(0) = - n ~ .  

In Dalarsson (1991a), I suggested a method to resolve this difficulty 
by introducing a radial modification phase q~ = tp(r) in the ansatz (1.4) 
as follows: 

U(r) = exp[i '~.roF(r) + iq~(r)], r0 = r/r (1.16) 

Such a method provides a stable chiral quantum soliton, but the resulting 
model is an entirely noncovariant chiral model, different from the original 
chiral or-model. 

In the present paper we use the constant-runoff limit of the cutoff 
quantization method developed by Balakrishna et al. (1991) and Jain et al. 
(1989) to construct a stable chiral quantum soliton within the original chiral 
~-model. Then we apply this method to SU(3)-symmetry breaking in strange 
dibaryon states and derive the results for spectra of some strange and non- 
strange dibaryon states and obtain the numerical results for the masses of 
these states. 

The reason why the cutoff approach to the problem of the chiral quantum 
soliton works is connected to the fact that the solution F = F(r) which 
satisfies the boundary conditions F(w) = 0 is singular at r = 0. From the 
physical point of view the chiral quantum model is not applicable to the 
region about the origin, since in that region there is a quark-dominated bag 
of the soliton. 

However, as argued in Balakrishna et al. (1991; see also Jain et al., 
1989), when a cutoff e is introduced, then the boundary conditions 
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F(e) = - n w  and F(~) = 0 can be satisfied. In Batakrishna et al. (1991) an 
interesting analogy with the damped pendulum is discussed, showing clearly 
that as long as ~ > 0, there is a chiral phase F = F(r) satisfying the above 
boundary conditions. The asymptotic forms of  such a solution are given by 
Eq. (2.2) in Balakrishna et aI. (1991). From these asymptotic solutions we 
immediately see that for E --+ 0 the chiral phase diverges at the lower limit. 

2. CONSTANT-CUTOFF STABILIZATION 

Substituting (1.4) into (1.1), we obtain for the static energy of the 
chiral baryon 

Eo = -~ F~ dr + 2 sin2F (2.1) 
~(t) L \ d r /  

In (2.1) we avoid the singularity of the profile function F = F(r) at the origin 
by introducing the cutoff e(t) at the lower boundary of the space interval 
r e [0, ~], i.e., by working with the interval r e [~, ~]. The cutoff itself is 
introduced, following Balakrishna et al. (1991), as a dynamic time-depen- 
dent variable. 

From (2.1) we obtain the following differential equation for the profile 
function F = F(r): 

- -  r 2 = sin 2F (2.2) 
dr 

with the boundary conditions F(e) = -,rr and F(oc) = 0, such that the correct 
soliton number is obtained. The profile function F = F[r; e(t)] now depends 
implicitly on time t through e(t). Thus in the nonlinear ~-model Lagrangian 

L = ~ Tr(0~U O~U +) d3r (2.3) 

we use the ans~itze 

where 

U(r, t) = A(t)Uo(r, t)A+(t) 

U+(r, t) = A(t)U~(r, t)A+(t) 

U0(r, t) = exp{i'r, r0F[r; e(t)] } 

The static part of the Lagrangian (2.3), i.e., 

L = 16 ) T r (VU.TU § d3r = - E  0 

(2.4) 

(2.5) 

(2.6) 
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is equal to minus the energy E0 given by (2.1). The kinetic part of the 
Lagrangian is obtained using (2.4) with (2.5) and it is equal to 

L = -i6 Tr(0oU Oo U§ d3r = bx 2 Tr[0oA Oo A§ + c[2(t)] 2 (2.7) 

where 

2~r II ~ y2 b = ~ -  F 2 sinZF dy 

2rr f~ 2 [ d F ?  2 c = F 2 y ~--~y)y dy (2.8) 

with x(t) = [e(t)] 3/2 and y = r/e. On the other hand, the static energy functional 
(2.1) can be rewritten as 

E o = a x  2/3,  ='r rF2 f l~[y2 (dF)2+2s in2F]dy  (2.9) 
a 2 t \~YY,] 

Thus the total Lagrangian of the rotating soliton is given by 

L = c x  2 - a x  2/3 4- 2bxZ6Lv6~ v (2.10) 

where Tr(00A Oo A+) = 2a~6 ~ and a~ (v = 0, 1, 2, 3) are the collective 
coordinates defined as in (Bhaduri, 1988). In the limit of a time-independent 
cutoff (2 --+ 0) we can write 

H = __OOL ~oL 6L ~ - L = ax 213 4- 2bxZOLvOL v = a x  213 4- 2-~X 2 J (J  4- 1) 

(2.11) 

where (j2) = j ( j  4- 1) is the eigenvalue of the square of the soliton angular 
momentum. A minimum of (2.11) with respect to the parameter x is reached at ;,,4 

[ ~ a b  e l  = ab 
X = J ( J  + 1 ~ J ( J  + 1) 

(2.12) 

The energy obtained by substituting (2.12) into (2.11) is given by 

4 -~J(J + 1) (2.13) 

This result is identical to the result obtained by Mignaco and Wulck, which 
is easily seen if we rescale the integrals a and b in such a way that a 

2 (~r/4)F~a, b ~ ('rd4)F~b and introducef~ = 2-3/2F~. However, in the present 
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approach, as shown in Balakrishna et al. (1991), there is a profile function 
F = F ( y )  with proper soliton boundary conditions F( I )  = - v  and F(~c) = 
0 and the integrals a, b, and c in (2.9)-(2.10) exist and are shown in Bala- 
krishna et al. (1991) to be a = 0.78 GeV 2, b = 0.91 GeV 2, c = 1.46 GeV 2 
for F~ = 186 MeV. 

Using (2.13), we obtain the same prediction for the mass ratio of  the 
lowest states as Mignaco and Wulck (1989), which agrees rather well with 
the empirical mass ratio for the A-resonance and the nucleon. Furthermore, 
using the calculated values for the integrals a and b, we obtain the nucleon 
mass M(N) = 1167 MeV, which is about 25% higher than the empirical value 
of 939 MeV. However, if we choose the pion-decay constant equal to F~ = 
150 MeV, we obtain a = 0.507 GeV 2 and b = 0.592 GeV 2, giving the exact 
agreement with the empirical nucleon mass. 

Finally, it is of interest to know how large the constant cutoffs are for 
the above values of the pion-decay constant in order to check if they are in 
the physically acceptable ballpark. Using (2.12), it is easily shown that for 
the nucleons (J = 1/2) the cutoffs are equal to 

'0.22 fm for F,~ = 186 MeV 
e = { 0 . 2 7 f m  for F= = 150MeV 

(2.14) 

From (2.14) we see that the cutoffs are too small to agree with the size of  
the nucleon (0.72 fm), as we should expect, since the cutoffs rather indicate 
the size of the quark-dominated bag in the center of the nucleon. Thus we 
find that the cutoffs are of  reasonable physical size. Since the cutoff is 
proportional to Fgl ,  we see that the pion-decay constant must be less than 
57 MeV in order to obtain a cutoff which exceeds the size of  the nucleon. Such 
values of  pion-decay constant are not relevant to any physical phenomena. 

3. T H E  S U ( 3 ) - E X T E N D E D  S I M P L I F I E D  S K Y R M E  M O D E L  

3.1.  T h e  Ef fect ive  I n t e r a c t i o n  

The Lagrangian density for a dibaryon system with pseudoscalar mesons 
is, with Skyrme stabilizing term omitted, given by (Callan and Klebanov, 
1985; Callan et al., 1988; Kunz and Mulders, 1988; Kopeliovich et al., 1992) 

= ~ Tr O~U O~U + + - ~  m 2 Tr(U + - 2) 

_ 1 ( F ~  - F~)  Tr(1 - , / 3 k s ) ( U  O~U O~U + + O~U O~U+U +) 
48 

2 2 U + 1 ( F x m K  2 2 - -  - F.~m~:) Tr(1 - . , /~hs) (U + - 2) (3.1)  
+ 24 
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where m~ and mx are pion and kaon masses, respectively, and FK is the kaon 
week-decay constant with the empirical value F~ = 226 MeV. The first term 
in (3.1) is the usual a-model Lagrangian, while the remaining three terms 
are all chiral- and flavor-symmetry-breaking terms, present in the mesionic 
sector of the model, which will be used in this form even for the multibaryon 
(n > 1) states. All flavor-symmetry-breaking terms in the effective Lagrangian 
(3.1) also break the chiral symmetry just as quark-mass terms do in the 
underlying QCD Lagrangian. In addition to the action, obtained using the 
Lagrangian (3.1), the Wess-Zumino action in the form 

S = -240,rr---- 7 dSx e ~ 

• Tr[U+O~U U+O~U U+O~U U+O~U U§ (3.2) 

must be included into the total action of a dibaryon system, where Nc is the 
number of colors in the underlying QCD. The Wess-Zumino action defines 
the topological properties of the model, important for the quantization of the 
solitons. In the SU(2) case the Wess-Zumino action vanishes identically and 
was therefore not present in the discussions of Sections 1 and 2. 

In the single-baryon (n = 1) sector the lowest energy states have the 
hedgehog structure within SU(2) given by (1.4). The lowest dibaryon states 
(Weigel et al., 1985; Kopeliovich et al., 1992) are characterized by an axially 
symmetric form of U leading to a torus-shaped baryon-number density, i.e., 
we have the SU(2) ansatz 

Ur(r) = exp[ix'11x(r, z)l 

= [ c~(r, z) sin nqb | (3.3) 
cos o,(r, z) / 

where • = x(r, z) and a = a(r, z) are the functions for the polar and chiral 
angles depending on two variables r and z, and qb is the azimuthal angle. 
The total soliton number of the toms-like state Ur(r) given by (3.3) is B = 
n if X(e, 0) = ~. In the present paper the case B = 2 will be of primary 
interest. The extension to SU(3) is done using the rotational ansatz 

U(r, t )=A(t)[Ur[R~ (t)rj] ~]A+(t) (3.4) 

with time-dependent SU(3) rotation matrices 

a(t) = I(ot, fS, ~I) exp(-ivk4) l(a',  [3', ~/') exp[-i(p/v/3)k8] (3.5) 

The matrices I in (3.5) denote rotations in the isospin subgroup of SU(3) and 
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R?(t) in (3.4) is a spatial rotation matrix. Flavor rotations increasing v in 
(3.5) lead to an increasing absolute value of strangeness in a dibaryon state. 
The static mass of the torus is then obtained as a functional 

1 s d3 r {[F~ + (F~ - F 2) sinZv M(v) = -~ _>-~ COS X] 

r / , ~  2 . ~  ( o ~  ~ n ~ 
• / / O X / +  sm Xt-~Tr) + sin2x sin20~ 

?• + (o< ~] 
+ \-O-zz) sin• J 

.Jr_ 2 2 9 o 2 2 } 2[F~rn~ + (FT~m?~ cos X) - F.~rn.,) sin2v](1 - (3.6) 

The functional (3.6) is independent of the Euler angles except for a v depen- 
dence originating from the flavor-symmetry-breaking terms of the effective 
action, and e is the constant cutoff at the lower limit of the space interval 
r r [e, m]. 

3.2. The Rotational Energies of the Strange Dibaryons 

For the time-dependent rotation matrices A(t) and the spatial-rotation 
matrices R(t) introduced in (3.4) we have the corresponding angular velocities 
0 and co, respectively, defined by 

1 8 3 
A-lOo A = -~ i ~ kaO ~, (R-IOoR)mn = ~ E,~npO~ p (3.7) 

a=l  i7=1 

where emnp (m, n, p = 1, 2, 3) is the totally antisymmetric tensor with e123 
= 1. The Lagrangian of a rotated toms then becomes 

2 
1 2 1 a ; 0 , )  ~ ,,,po,~ L = - e ( ~ )  + ~ a~O,) ~ o~o a + 

a=l p=l 

1 
-1- 7 O3(1/)(03 at- nt~ 

7 N< 
1 as( , ' )  ~; %O ~ - 2 , / 7  0~ (3.8) 

-}- 2 a=4 

As argued in Kopeliovich et al. (1992), for slowly rotating solitons the system 
has sufficient time to adjust its shape for every angle v according to the 
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forces exerted by the flavor-symmetry breaking. Such an assumption is cer- 
tainly satisfied for Arc large and, as shown in Kopeliovich et al. (1992), it is 
also fairly well satisfied for Nc = 3. The moments of inertia in (3.8) are 
given by 

1 f~ d3r [F~ + cos X sin2v ( F2 - F~)] ~'-~U(1)) : 8 ---->, 

• (1 + cos2a) sin2• (3.9) 

~-~s(1)) : ~;r> dar If2- (f2- F2)(1 - ~cos X) sin2p 1 
• (1 - cos X) (3.10) 

l~3(v ) = ~ d3r [F~ + (F} - F~) cos X sin2v] sin2• sin2a (3.11) 

l f r  a~(V) = g d3r [F~ + (F} - F~) cos X sin2v] 

• { z2 + sin2• 

z 2 
+ n2 ~5 sinZx sin2a 

O• + sin2 • OX 0• 
- o z  

+ F F(~ + s n  /O~ L\~) \Oz) JJ 
From equations (3.9), (3.11), and (3.12) we see that ~'~N, ~'~3, and ~ are 
easily obtained from the flavor-symmetric results, obtained in Braaten and 
Carlson (1988), by the substitution F~ ~ F~ + (F[  - F~) cos X sin2v, 
leading to a small increase of inertia. 

After the collective-coordinate quantization the total Hamiltonian of the 
system becomes (Kopeliovich et al., 1992) 

1 [ 1 , 1 _ _ _ _ L j ( j +  1) H = M(v) + -~ ~ C2[SU(3)] + 212j(v) 

+ 2f~v(v) 2f~(v) N(N + 1) 
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L I 1 n 2 ] 
+ 20.3(V ) 2 ~ N ( P  ) 2 ~ j ( V )  La 3 B2 �9 8f~,,(v~ (3.13) 

where the eigenvalues of diagonal operators are inserted. These eigenvalues 
also label the eigenfunctions of the Hamiltonian (3.13) given by (Kopeliovich 
et al., 1990, 1992) 

NL q&,3,jj~(A ) = ~,  Dth3ML(Ot, [3, ~)fMIcV)(rJ~R )(V) 
MLMR 

X N)* r D~Rc(o~ , [J', "y')e2ipD~J3GL(ot ', [3', ~l') (3.14) 
As argued in Kopeliovich-et al. (1992) for the flavor-symmetric case, 

they are classified apart from their spin J, isospin I, and hypercharge Y by 
the definite SU(3) representations (p, q) as 

(p,q)* 

fM~r)(MgZ)(V) = d(@(~r (v) (3.15) 

leading to the SU(3) rotation matrices given in Holland (1969). When the 
flavor symmetry is broken the angular eigenstates correspond to a mixture 
of different SU(3) representations (p, q) leaving all other quantum numbers 
labeling ".I r in (3.14) unchanged. Among these there are also N = �89 where 
(P0, q0) is the representation of minimal triality }(p + 2q) present in the 
mixture, and L, which determines the parity P = (_)L of the state. 

3.3. The Spectrum of the Strange Dibaryons 

Introducing now the dimensionless variables p = r&, ~ = z/e, where 
is the constant cutoff, into the integrals (3~ and (3.9)-(3.12), we find that 
the Hamiltonian (3.13) becomes 

H = al(v)e + a2(p)e 3 + [3(v)~! -3 (3.16) 

where al(v) and a{v )  are integrals given by 

1 f.  d3P [F2 + (F} - F 2) sin2v cos • a ,0 , )  = 

F( x? + x L\ I sin2x \~l 

+ ~5 sin2x sina~ + \~-~j + sin2x \-~-j j (3.17) 

= ( 2 2 2 2 _ r 2 m 2 ) 1 d3p [F~,m, + (FKmK ~ ~, sinZv](1 -- Cos • (3.18) a2(v) 4 Jp_>l 
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and [3(v) is given by 

~(v) = -~ C2[SU(3)] + 2bs(v) 

+ [2b~(v) 2b,~v)] N(N+I) 
[ 1 l n 2 ] 

+ 2bT(v) 2bu(v) 2ba(v) L2 3 8bs(v) - -  B 2 ( 3 . 1 9 )  

In (3.19), bN, b,, b3, and bj are integrals given by 

1 Ip d3p IF2 + cos X sin2v (F} - F~)] 
b N ( v )  ~-- -~ >- 1 

• (1 + cos2o0 sinZx (3.20) 

bs(v)=~fp> dgP IF2- (F2x-F2)(1 -~cosx) sin2v] 

X (1 - cos X) (3.21) 

1 Ip (3.22) b3(v) = 4 -->1 

1 Ip d3p [F~ + (F} - F 2) cos X sinev] b a y )  = ~ ~-1 

X ~ 2 [ (  0x] + sin2x + n 2 I. L\ap/ ~ sin2• sin2~ 

+ 2 + 

d3p [F~ + (F 2 - F~) cos X sin2v] sin2x sin2~ 

The Hamiltonian (3.16) has a stable minimum with respect to the dimen- 
sional parameter e when 

e(v) = [~ [3(v) f + (1 4al(v) 3 ~1/21 al(l)) 3 ~1/3 
L[2a-- ~ L 1 7 2 9 ~ v )  3j J 729a2(v)3J 

~ [3(v) [1 _ (  1 4al(v) 3 )1/2] 
+ L2~2(v) 72913(v)a2(v) 3] J 
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al(v)3 ~1/3 al(v) 11/2 (3.24) 
729--a2(v)3J 9a2(v) 

where for the actual values of the quantities a l, a2, and [3 the constant cutoff 
is a positive quantity, i.e., e > 0. 

The spectrum of the strange dibaryons is now given by (3.16) with e 
given by (3.24). In the chirally symmetric case, i.e., when mx = m.~ = O, 
we have a2(v) = 0 and thus we obtain 

[313(1/)] 1/4 ' 4 
e(11) = La-~-~v) ] H(11) = ~ [3a1(11)313(1))1TM (3.25) 

and these are the familiar 1/4-power formulas obtained in (2.12) and (2.13). 
Furthermore, in the spherical single-baryon (B = 1) case, with both chiral 
and flavor symmetries unbroken, the results (3.25) are identical to the results 
(2.12) and (2.13) for the constant cutoff e and energy of the system E, 
respectively. In other words in that case we have al(v) --~ a = 0.78 GeV 2 
and [3(v) ~ (1/2b)J(J + 1) with b = 0.91 GeV 2 for F~ = 186 MeV. 

3.4. Numerical Results 

The numerical results for the spectrum of some strange dibaryon states 
(B = 2) for F ,  = 186 MeV and FK = 226 MeV and the empirical values 
for m,  and mx are given in Table I. These results are classified in the same 
way as in Kopeliovich et al. (1992) and compared to the results obtained 
using the complete Skyrme model in that work. For a detailed discussion of the 
group-theoretic structure of the results presented in Table I, see Kopeliovich et 
al. (t992). 

From Table I we see that, as in the spherically symmetric case, we 
obtain rather good agreement for the absolute masses of the states with 
relatively low (iso)spin and strangeness quantum numbers. For the states 
with higher (iso)spin and strangeness our results obtained using the approxi- 
mately 1/4-power law are somewhat higher than those obtained using the 
complete Skyrme model. However, the results obtained here show reasonable 
qualitative agreement with the results obtained in Kopeliovich et al. (1992) 
even for the states with higher (iso)spin and strangeness. 

4. CONCLUSIONS 

The present paper has shown the possibility of using the Skyrme model to 
calculate the spectrum of strange dibaryon states as torus-like configurations 
without the use of the Skyrme stabilizing term, proportional to e -2, which 
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makes practical calculations more lengthy and painful and which is not 
sufficiently well understood in the framework of the underlying QCD. 

The results for the absolute masses of the strange dibaryons, obtained 
using the empirical values of the parameters F~,, Fx, mr, and mx are in 
general qualitative agreement with those obtained using the complete Skyrme 
model. As in the B = 1 spherically symmetric case, we see that the difference 
between our results and those obtained using the complete Skyrrne model 
increases with increasing (iso)spin and strangeness quantum numbers. This 
is a general feature of the 1/4-power law obtained as a consequence of the 
chiral quantum stabilization of the system. 
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